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Abstract

We introduce a new, reliable, and agnostic uncertainty measure for classification
tasks called logit uncertainty. It is based on logit outputs of neural networks. We in
particular show that this new uncertainty measure yields a superior performance
compared to existing uncertainty measures on different tasks, including out of
sample detection and finding erroneous predictions. We analyze theoretical foun-
dations of the measure and explore a relationship with high density regions. We
also demonstrate how to test uncertainty using intermediate outputs in training of
generative adversarial networks. We propose two potential ways to utilize logit-
based uncertainty in real world applications, and show that the uncertainty measure
outperforms.

1 Introduction

Machine learning has seen drastic accuracy improvements in classification tasks over the past few
years with ever increasing computational power and deeper neural networks. For example, Top-1
Accuracy for ImageNet now exceeds 85% with a state-of-the-art method [1]. Despite the incredible
accuracy achievements, neural network classifiers inevitably make mistakes, some of which can be
costly. Therefore, it is beneficial to know uncertainty associated with the classification output of
neural networks so that we know when a model is more likely to make mistakes. Many methods
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Figure 1: Uncertainty distribution on unrelated data set using ensemble.

of evaluating uncertainty of classification rely upon softmax probabilities generated from neural
networks. However, these probabilities or the entropy of these probabilities are notoriously unreliable,
making these uncertainty measures unsuitable for tasks such as medical diagnosis or fraud detection
when mistakes can be costly. For example, Figure|l|shows the uncertainty histogram on FashionMnist
that is completely different from the training set MNIST. Uncertainty is obtained using an ensemble
method [3] and it shows the high portion of low uncertainty predictions. In this paper, we derive a
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reliable uncertainty measure based on the logit outputs of neural networks named logit uncertainty.
The measure can help classification models detect when they are more likely to make mistakes. The
usage of such an uncertainty measure includes, for example, introducing an expert into the decision-
making process when the uncertainty associated with classification is high. Another application of
such an uncertainty measure is in novelty detection, where a neural network can detect a shift in data
distribution [8]. Thus, we can make the decision to retrain the classifier to adapt to the shift.

While logit-based uncertainty applies to any model producing logits such as logistic regression and
gradient boosted machines from trees, we focus herein on deep neural networks. Intuitively, logit
outputs capture data uncertainty, meaning, if class A is intrinsically similar to class B but different
than class C, then the logit value at class B of class A’s logit output is higher than the logit value
at class C of the same logit output. For example, in the Cifar10 image classification task [9], we
observed that logit values at cat for dog images’ logit outputs are higher compared to the logit
values at other classes such as trucks or airplanes and vice versa (Figure 2). Our key idea is to use
Gaussian Mixture to model the logit outputs of correctly predicted training sample for each class and
to model uncertainty values based on the probability density function of the Gaussian Mixtures. The
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Figure 2: Average logit values of correctly predicted dog and cat images.

logit-based uncertainty we derive is agnostic and only depends on the raw logit output of the neural
network. Therefore, we can treat the neural network classifier as a black box and eliminate the need
to retrain the model in order to compute the uncertainty values. This is especially beneficial since
training of a complex model on a challenging task can take days or even weeks to complete. As a
result, our method to compute uncertainty is easy to incorporate into existing deep learning models in
serving.

In the experiments, we demonstrate that logit-based uncertainty outperforms existing uncertainty
measures by a large margin. For example, unlike other methods, our uncertainty measure exhibits
a clear distinction for images of airplanes, trucks, and cars tested on a neural network trained on
passenger cars. Additionally, the order relationship of the uncertainty values obtained from our
method is meaningful, with the average uncertainty values for airplanes larger than trucks, and in
turn larger than cars for a neural network trained on cars. This is another desired quality that many
existing methods do not exhibit [2].

Our main contributions are as follows. We propose a new uncertainty measure relying on logit values
and agnostic to the underlying classification model. We also analyze theoretical foundations of our
method and the relationship between the logit-based uncertainty measure to high density regions. The
third contribution is embedded in the comprehensive experimental study. To this end, we introduce
an evaluation method consisting of training on one data set and assessing uncertainty on a different
data set with context drift. We also experiment by generating GAN [7] images based on a data set
and then computing uncertainty on such samples. A comparison of logit-based uncertainty to other
prior uncertainty models shows that our strategy is much more reliable. Additionally, we demonstrate
that the logit-based uncertainty measure yields better results in two real world applications.

This paper is organized as follows. Section 2 explores existing uncertainty measures. Section 3
introduces and analyzes our method. Section 4 describes the comprehensive experiments. Finally,
Section 5 presents conclusions.



2 Literature Review

Our line of work is related to uncertainty and confidence estimation for deep learning classification,
which aims to generate a number typically within 0 and 1 from outputs of neural networks. Sensoy et
al. [5] provide a novel idea of viewing the logit outputs of neural networks as evidence for each class,
and build a Dirichlet distribution with parameters based on those evidences. The authors cleverly
tailor a loss function that suits their need and are able to generate meaningful uncertainty measures.
However, in practice, their method requires retraining of the neural network which can be expensive.
Additionally, their uncertainty values tend to concentrate around 1 when encountering novel data
points, making the order relationship of the uncertainty values less meaningful. Our method addresses
both of the problems and achieves stronger results in more general tests.

Many other existing methods that compute uncertainty require a number of outputs for a single data
sample. These methods typically generate the uncertainty values base on the average or the variance
of the outputs. These include the ensemble method [3], the drop-out method [4], and the Bayesian
neural networks [6]. Similar to logit-based uncertainty values, their values do not concentrate on
a single value compared to [5] and offer some evidence of a meaningful order relationship with
higher uncertainty actually representing lower confidence. However, from the experiments, when
encountering out-of-the-distribution data points, these methods exhibit poor performance compared
to the logit-based uncertainty method. Additionally, since all of the above require multiple outputs
for a single data sample, they all require additional computational power, which is often not practical.

One method to compute uncertainty is provided in [2]. The authors propose to first construct an
a-high-density-set of each class and then compute the uncertainty based on the distances of the
given points to the constructed sets. Similar to logit-based uncertainty, this uncertainty measure is
agnostic to the underlying model and only requires minimal computational resources to generate
the uncertainty value. However, this method does not work well on high-dimensional data sets such
as MNIST, Cifar10, and Cifar100. Logit-based uncertainty does not construct density sets of each
class, but models the logit outputs using mixtures directly and it empirically obtains much better
uncertainty estimates on these high-dimensional data sets.

Another uncertainty method is introduced in [11] named deep k-NN (DkNN). This method compares
the intermediate output of deep neural networks of training and testing sets, and it uses a nearest
neighbors method to estimate nonconformity in the predictions. The nonconformity can then be
used to make predictions, confidence, and reliability. This method has very reliable performance but
requires extensive computational power. For example, in our experiments on finding uncertainty of
GAN images, DKNN requires about 19 hours computating on Tesla P100 GPU, and for comparison,
our method only requires less than 5 minutes on the same GPU.

3 Methodology

We have observed that logit values capture some uncertainties, meaning that the logit outputs of a
specific class should share similar logit values in each dimension of the logit vector. The intuitive
explanation for the above logic is that the samples from one class should share similar features.
Therefore, if the logit values of a sample is different from the known logits of predicted class, we
expect the prediction to be of low confidence. With such intuition in mind, we work with the raw
logit outputs of the correctly predicted training data.

In summary, we fit Gaussian Mixture Models (GMMs) to the logit vectors of correctly classified
samples for each class; reasons for using GMMs are they are universal approximations [12], and under
certain assumptions, a neural network generates GMM distributed outputs. Details are provided in
Section 3.2. One natural idea that follows is to base the uncertainty measure on the density functions
of the GMMs; meaning the larger the density function value the smaller the uncertainty. To work
with extreme small values of the density functions that are typically observed in datasets, we design a
score function to make the values more manageable. Lastly, we use a Sigmoid function to map the
values obtained from the score function to the range between 0 and 1.



3.1 Uncertainty Measure

Suppose we have a data set with k classes and we have already trained a classification model on this
data set. For each class 7, we select the correctly predicted training data and use a GMM to model the
logit outputs of these data. The number of components is selected based on the Bayesian Information
Criterion against the number of components and we use the elbow rule to select a reasonable number
of components. Suppose the fitted Gaussian Mixture has probability density function gmm,;. We
then define score s;(X) for a feature vector X as

si(X) = ln(m?x(gmmi(t))) — In(gmm;(X)). (1)

If X is considered as a random vector, then the score s; is also a random vector, and we can find
the ¢-th percentile of the score denoted as s;,.To map score s to [0, 1] we apply the logistic function
gi(s) = ﬁ In order to find the parameters ¢;; and c;o of the logistic function, we use four
hyperparameters 0 < u; < 1,0 <up <1,0<¢q; <1,and 0 < g5 < 1. We want the ¢; quantile of
s; to map to u; and go to ug. This translates to g;(siq, ) = u1, and g;(Siq, ) = uz, resulting in

Siqo ln(ufl_l)_siql 1“(“;1 _1)
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o —ln(u;l—l)
i1 = Sigg —Ci2

Finally, when we encounter a new data sample x that is classified as class ¢, its uncertainty value is:

3.2 Analysis

In this section, we first provide reasons for selecting Gaussian Mixtures to model the logit output
vectors for each class. Then we analyze the proposed logit uncertainty to make sure it makes intuitive
sense. Additionally, we explore the relationship of the logit-based uncertainty measure with existing
statistical concepts.

We start with reasons for using Gaussian Mixtures. We first describe a theorem that shows with
proper assumptions that the limiting distribution of neural network outputs converges in distribution
to Gaussian Mixture. Consider a fully connected neural network with D hidden layers each of size
H,,pe{1,...,D}. The network has real-valued input and output vectors of dimensions H, and
Hp 4, respectively. We describe the neural network with the following recursion [13]:
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where i ranges between 1 and H,,. We also assume
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Here G(c) denotes a Gaussian Mixture distribution with ¢ components. We have a sequence of
neural networks n = 1,2,... with network n having H,,(n) neurons in layer x for p = 1,..., D.
The number of layers D does not depend on n. Additionally, since we are interested in the limiting
behavior of the neural network, we scale the weight variances to ensure a converging variance where

CAZ(D“ ) = C’fﬂ 0 u—1(n) < @ for every 1 and n. We now present the result.



Theorem 1. Consider a random fully connected neural network of the form (3)-(5) satisfying
assumptions (6)-(9). Then for all sets of strictly increasing in n width functions H,,(n) and for any
finite input set {x,,, } X _,, the distribution of the output neural network converges in distribution to a
Gaussian Mixture distribution as n — co.

The proof of this theorem is in the Appendix. The next claim ensures logit-based uncertainty makes
intuitive sense. The uncertainty we are trying to compute is similar to the problem of estimating
the probability that a new data point in the k-dimensional Euclidean space belongs to the Gaussian
mixture for the predicted class. It makes sense that points with higher density values should have
lower uncertainties.

Proposition 1. For z; and x5 that are predicted as class i, if gmm;(z1) > gmm;(z2), then we
have u(z1) < u(z2).

This proposition follows from monotonicity. Before moving onto the second claim, we introduce the
highest density region (HDR) [10]. The (1 — «)-HDR is the subset R( f,,) of sample space X such
that R(f,) = {z: f(z) > fa}, where f, is the largest constant such that P(X € R(f,)) > 1—«
with f(x) being the probability density function of X. We have the following result that builds a
connection between logit-based uncertainty and HDR.

Proposition 2. Any sample z within the ¢;-HDR has uncertainty value u(x) < w;. Similarly, any
sample = within the go-HDR has uncertainty u(z) < us.

The second proposition builds a connection between the proposed method of logit-based uncertainty
and HDR. The claim also enables us to adjust the parameters of logit-based uncertainty based on
different needs. For example, if we are detecting tumors and misclassifications are costly, we can
adjust the model to be more conservative with lower values of ¢, u1, g2, us.

Another result follows from the second claim. For confidence value s € [0, 1] and confidence region
R C Q for a probability density function, « is a confidence value related to R if fﬂ\ R p(z)dx = k.

We note that the confidence value is not useful unless R is defined as a minimal volume region that
satisfy the integral. The resulting confidence region R with confidence value s then becomes the
HDR R(f,) [10]. Therefore, we can rephrase proposition 2 as any sample x within the (1 — ¢1)
confidence region has uncertainty value u(z) < w; and any sample = within the (1 — ¢2) confidence
region has uncertainty value u(z) < us.

For Gaussian mixtures with one component, the multivariate Gaussian case, we explore the rela-
tionship between the logit uncertainty and the Mahanobis distance to Gaussian distributions. The
Mahanobis distance r(x) between z that is sampled from a Gaussian and the same Gaussian dis-
tribution with mean p and covariance matrix ¥ is defined as r(z) = ((z — p)"S " (x — p))'/2.
Furthermore, let F'(r) be the cumulative distribution function of random vector r. The following
result builds a connection between HDR and 7.

Proposition 3. For (1 — «)-HDR, let R(f,) be defined with respect to a multivariate Gaussian
distribution with mean p and covariance matrix 3, and probability density function ¢. If we let
re = F71(1 — ), then for any # € R(f,) the Mahanobis distance with respect to the Gaussian
distribution satisfies r(z) < r4.

Combining Propositions 2 and 3, it follows that when the Gaussian Mixture has only one component,
samples that share the same logit-based uncertainty have the same Mahanobis distance to the Gaussian
distribution.

3.3 [Extensions

Logit-based uncertainty is not applicable to k-nearest neighbors, random forests, or decision trees.
These methods, when used for classification, do not output values that can be fitted using a GMM,
therefore, our method does not apply to these classifiers. However, logit-based uncertainty applies to
logistic regression, support vector machines, and gradient boosting machines. For logistic regression,
it can be viewed as a single layer neural network therefore our logit uncertainty applies. Linear SVMs
use a hyperplane to separate different classes and output the distance to the hyperplane given a data
point. To obtain logit-based uncertainty, we can fit GMMs to the distances obtained from the training
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Figure 3: Uncertainty distribution for correct and incorrect predictions on MNIST test set.

data set. Therefore, our method also applies to SVMs. A gradient boosting machine outputs logits for
each class when used for classification which makes it easy to compute logit-based uncertainty.

4 [Experiments

In this section we empirically evaluate the proposed approach, assessing the performance of logit
uncertainty on different tasks described below. In all of the below tests, we use ¢; = 80 and
g2 = 60 with u; = 0.5 and uy = 0.2, as these hyper-parameters yield the most robust results across
different experiments. The experiments are implemented using Tensorflow and all training and GAN
experiments are done on Google Cloud with Tesla P100 GPU and the remaining experiments are
timed on Google Colab with Tesla T4 GPU.

4.1 MNIST Experiments

MNIST is a data set of handwritten images with 60,000 training and 10,000 testing samples, where
each image is of size 28 x 28. For training of MNIST, we use a CNN with 20 and 50 filters with
size 5 x 5 and 500 hidden units for the fully connected layer. This simple architecture achieves
performance similar to state-of-the-art. The first test involves inspecting the uncertainty distribution
on the correctly and incorrectly classified images in the test set; Figure 3| shows the empirical CDF of
uncertainty values for such images. As a comparison, we also include the uncertainty distributions
using the ensemble method detailed in [3], Bayesian approximation from [4], the Evidential method
from [5], and the deep k-NN method from [11]. It is worth noting that classification accuracy is
about 99% for all five methods. From the above results, DKNN demonstrates a better performance,
however, as mentioned in Section 2, DkNN requires many more computational resources. Compared
to other methods, logit-based uncertainty shows better performance on incorrect predictions.

Another experiment involves context drift. We use our model trained on the MNIST data set and then
perform inference on the FashionMNIST data set. FashionMNIST is a data set of fashion images
including clothes, dresses, and shoes, with each image of size 28 x 28. We should expect a perfect
uncertainty measure to output values close to 1 as uncertainty for all predictions since we are forcing
the model to classify fashion items as digits. Figure [4| shows the empirical CDF of uncertainty
values for 60,000 training FashionMNIST images using logit-based uncertainty method and other
benchmark methods. Although the Evidential method seems to have the best performance with the
majority of uncertainty values above 0.8, we are going to, in the following experiments, observe that
the Evidential method tends to be over-conservative. DKNN also shows superior performance, but
again, it requires much more computing power. Compared to Ensemble and Dropout, logit-based
uncertainty exhibits preferred behavior in that it does not have low uncertainty values, and has many
more predictions with high uncertainty values.

We next introduce a new experiment regarding uncertainty measures by testing them on a data set
where we should expect a perfect uncertainty measure to output intermediate values. To be more
specific, for a model trained on MNIST, the handwritten digits data set, we expect the model to
output intermediate values for fuzzy handwritten images. To this end, we select the USPS data set.
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Figure 4: Uncertainty distribution for FashionMNIST.

The USPS data set consists of 7,291 training images of handwritten digits, however, the crucial
difference between the USPS and MNIST is that the size of each USPS image is 16 x 16 whereas
the size of each MNIST image is 28 x 28. Therefore, if we enlarge the USPS image to 28 X
28, we expect a perfect uncertainty measure to produce intermediate uncertainty values. Figure[3]
shows the uncertainty empirical CDF of the models trained on MNIST and tested with enlarged
USPS images. Comparing to the results obtained in Figures [3|and it is obvious that for the USPS
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Figure 5: Uncertainty distribution for USPS data set.

test, the logit-based uncertainty measure outputs many more uncertainty values from the 0.2 to 0.8
range, which is what we expect for a good uncertainty measure. Other methods have more extreme
uncertainty values, and as we have anticipated, Evidential tends to be very conservative and prefers
to label predictions with high uncertainty values. DkNN shows a similar performance to logit-based
uncertainty.

Similar to the previous test, we create another test to establish if logit-based uncertainty values are
meaningful. We expect that as training of GAN proceeds [7], the generator’s images are approaching
real images of the target data set. Therefore, we use a generator with 64 and 128 filters of size 5 x 5
at the first and second convolution layers to generate images of digits similar to that from the MNIST
data set. We trained the GAN for 2,000 epochs and let each epoch generate 256 images using the
generator. We then use the CNN model trained on MNIST to classify these images and compute
their logit uncertainty. We only show the result using GAN to generate images of handwritten digit
7 since the results for other digits are similar. Figure [6] shows the average of the 256 uncertainty
values after each of the 2,000 training epochs. We know that during GAN training, generator’s
images are improving from fuzzy to clear as the training epochs increase, thus we should expect a
perfect uncertainty measure to have uncertainty values for these images change from high uncertainty
at the start of training to low uncertainty at the end of training. Indeed, this is what we observe
in Figure [§] with logit-based uncertainty. From the same plot, we observe that the Ensemble and
Dropout uncertainty distributions share very different shapes with the logit uncertainty distribution.
These two methods output relatively low uncertainty when the training epoch number is low, which
should not be the case for a good uncertainty measure. Evidential, given its conservative tendency,
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Figure 6: Uncertainty distribution for GAN images.

indeed has high uncertainty values even after 2,000 epochs of training. Again, DKNN shows a similar
performance to logit-based uncertainty.

Table 1: Uncertainty Statistics
Test and statistics Logit | Dropout | Ensemble | DkNN | Evidential
Mean 0.185 0.011 0.004 0.219 0.011
MNIST Correct | g\owness | 1.819 | 6780 | 10944 | 1.073 | 33.663
Mean 0.714 0.328 0.264 0.902 0.355

MNIST Incorrect | ¢ hece | 0722 | 0156 | -0050 | -2.801 | 0.737
) Mean | 0.680 | 0241 0314 | 0939 | 0967
FashionMNIST | ¢\ 0 hess | -0.551 | 0.637 0073 | 4463 | -1.379
p— Mean | 0.457 | 0.109 0077 | 0622 | 0905

Skewness | 0.383 1.561 2.028 -0.736 -0.383

Table 1 provides some summary statistics. From the table we see that logit-based and DkNN
uncertainty measures achieve good performance. They produce low uncertainty values for correctly
predicted MNIST, high uncertainty values for incorrectly predicted MNIST and FashionMNIST, and
modest uncertainty values for USPS. Skewness is an informative statistics as well. For correctly
predicted MNIST we prefer a small positive skewness, and for incorrectly predicted MNIST and
FashionMNIST, we prefer a negative skew with small absolute value. For USPS we prefer to have
a small skewness in absolute value. We observe that logit-based uncertainty and DKNN meet all
of the expectations whereas other methods all have at least one or more statistics that do not meet
expectations. Therefore, for each statistics we compare and highlight the better between logit-based
uncertainty and DKNN. The two methods achieve similar performance, however, in the next section
we compare the running time and memory usage between the two methods, and argue that considering
computing efficiency, logit-based uncertainty is better suited for the different tasks.

4.2 Running Time and Memory

Dropout and ensemble do not require long running time and much memory with an already trained
model. Evidential method requires retraining since it utilize a special loss function, however, with
a trained model, evidential does not require much computing resource to compute uncertainty.
Therefore, in this section, we only compare the running time and memory usage of logit-based
uncertainty and DKNN, with Table 2 summarizing the results. From the comparison we see that the
running time for logit-based uncertainty is at least about 40 times faster than DkNN. Logit-based
uncertainty also scales better since most of the computing time is to compute model output, and if we
are starting with logit outputs, it needs only little additional computation. In the GAN experiments
with roughly half a million images, logit-based uncertainty is more than 200 times faster than DkNN.
Additionally, for the MNIST test, DkNN requires more than 10 times the memory used by logit-based
uncertainty. The memory difference would get worse with more complicated neural networks since
DKNN requires the storage of all intermediate layer outputs. We conclude that logit-based uncertainty
is a more well rounded method compare to DKNN.



Table 2: Running Time and Memory Comparison

Memory Logit | DkNN/Logit
Setup 0.58mb 10.7
Time Logit | DkNN/Logit
Setup 4.1s 113.9

MNIST test set 14.8s 38.2
FashionMNIST 12.6s 46.5
USPS 10.5s 51.7
GAN images 300.0s 228.0
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Figure 7: Uncertainty distribution for correct and incorrect predictions on Cifar10 test set.

4.3 Cifar10 Experiments

The Cifarl0 data set consists of 60,000 color images of ten object classes with each image of size
32 x 32. We use Densenet40 with k = 12 for training of Cifar10 [9] and then perform similar tests
used for the MNIST data set. In the following tests, we do not include evidential and DKNN. The
implementation of the Evidential method is not stable and does not achieve meaningful accuracy.
DKNN is excluded due to memory limitations, as it requires storage of all the intermediate outputs.
Accuracies for the remaining models are comparable, and are about 92%. In the first test, we examine
the empirical CDF of uncertainty values of correctly and incorrectly classified images of the test set

(Figure[7).

The second test involves testing the model trained on Cifar10 on a different data set. For this test, we
select the Cifar100 data set, consisting of 60,000 color images of 100 classes, where each image is 32
x 32 in size. The 10 classes of Cifar10 are different from the 100 classes in the Cifar100 data set.
Therefore, we should expect a good uncertainty measure to output high uncertainty values, which is
observed for the logit-based uncertainty in the empirical CDF in Figure [8a]

The third test for Cifar10 is on images that we should expect a good uncertainty measure to output
intermediate values. To achieve this goal, we observe that one of the Cifar10 classes is automobile
with images of passenger cars that do not include pickup trucks. Additionally, Cifar100 has a pickup
truck class and, since pickup trucks and passenger cars are intrinsically similar to each other, we
expect the uncertainty values of pickup trucks that are predicted as automobiles to be larger than
those of the automobile images in the Cifar10 test set yet smaller than those of Cifar100. This is
exactly what we observe in Figure [8b|for logit-based uncertainty.

4.4 Uncertainty and Embeddings

In our previous experiments that involve out of sample images, we observe that using logit-based
uncertainty, we still have images that show low to medium uncertainty. For example, logit-based
uncertainties of the model trained on Cifar10 that tested on Cifar100 show many small values. We
hypothesize that it is because some out of sample images are intrinsically similar to the training
images. To test the hypothesis, we train two models. The first model is trained on the MNIST data
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Figure 9: Testing hypothesis.

set, and using the model’s uncertainty output, we create two subsets of FashionMNIST images of
low uncertainty and high uncertainty, with the low uncertainty set having uncertainty values below
0.2, and the high uncertainty set having uncertainty values above 0.8. Then we trained another
special model that is independent of the first model on both MNIST and FashionMNIST data set.
This special model has embedding layers that are shared during training for both data sets, but has
separate fully connected layers for MNIST and for FashionMNIST. Then we compare the output
of the shared embedding layers for images from the low and high uncertainty sets to the training
MNIST images. To compare the output, we first use PCA to reduce the dimension of the output from
the shared embedding layer to 10. Then we compute the minimum L2 distance from each low and
high uncertainty image to the training MNIST images. The resulting distributions of distances are
shown in Figure[9al The low uncertainty images are more similar to the training images than the high
uncertainty images to the training images.

To better visualize the results, we conduct another experiment using the output of the shared embed-
ding layer. We first reduce the dimension of the output to 300 using PCA for computational efficiency,
before further decrease the dimension of the output to two with t-SNE, and we plot the resulting
samples on the z-y plane as shown in Figure[0b] The purple dots are the training set of MNIST, the
yellow dots represent high uncertainty images, and the cyan dots represent low uncertainty images.
As shown in the plot, the low uncertainty images are closer to the training set compare to the high
uncertainty images.

The above experiments give us the confidence to claim that some out of sample images are intrinsi-
cally similar to the training images with regular convolution layers, thus it is expected that during
classification they have relatively low uncertainty values.
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4.5 Simulated Applications

We propose the following uses of logit-based uncertainty. In classification tasks, we propose to keep
the classification result if the uncertainty value associated with the classification model is below a
certain threshold ¢, and we send the task to a human expert for confirmation if the uncertainty value
is above the threshold. We further assume that human experts have perfect accuracy and there is cost
for each manually labeled sample, and a cost for each misclassification error the model makes. The
total cost is the number of manually labeled samples plus cost times the number of misclassifications.

In the following test, we train a model on MNIST, and test on the enlarged USPS images. All five
models achieve similar accuracy around 86%. Then for each threshold ¢, we find a lower and upper
bound on the cost ¢ such that the total cost of using logit-based uncertainty is lower compared to
other methods. The lower bound is typically imposed by the ensemble and dropout methods, and the
upper bound is typically imposed by the DKNN and evidential methods. Figure [10|shows the lower
and upper bound. When threshold is about 0.85 to 0.95, the upper bound is below the lower bound,
implying there is no c that makes logit-based model’s total cost minimum. However, the bounds are
still meaningful if we only compare the logit-based uncertainty to the models that impose the bounds.
By chance, the model using logit-based uncertainty has a higher accuracy, therefore, the upper bound
for threshold greater than about 0.95 is infinity and the lower bound goes to 0. From the figure, we

00 — Lower bound
175 Upper bound
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125
10.0

75

50 \—\
25 W
0o

02 04 06 08 10

Figure 10: Lower and upper bound of ¢ versus threshold ¢.

notice that for almost all threshold, there exist ¢ that makes logit-based uncertainty superior to all
other methods tested. Note that compare to DKNN and evidential models, logit-based uncertainty
achieves lower total cost if the cost of a mistake is lower, again, showcasing the over-conservative
nature of DKNN and evidential models.

Another use of logit-based uncertainty involves tests on context drift. We first train a classification
model on MNIST, and compute uncertainty on the 10,000 MNIST test set images. We use Gaussian
distributions to estimate the distribution of the resulting uncertainty values, and compare it to the
distribution of uncertainty values obtained on 10,000 images that are formed from a mixture of the
MNIST test set and the FashionMNIST training set. We then compute the KL distance of the two
uncertainty distributions obtained, and repeat the process with different portions of the FashionMNIST
images in the mixture. Figure[IT|shows the result with the z-axis as the percentage in the mixture that
are FashionMNIST images, and the y-axis the KL distance of the uncertainty distribution between
the mixture of images and the MNIST test set. We expect a good uncertainty measure to produce
an increasing KL-distance as portions of FashionMNIST increases, and both DkNN and logit-based
uncertainty meet this expectation.

5 Conclusion

This paper proposes an uncertainty measure with a novel theoretical foundation for classifications
with models of logit outputs. The logit-based uncertainty measure is general in the sense that it
is agnostic to the network architecture, to the learning procedure, and to the training task. The
extensive experiments show our method’s superior performance on different tasks with different
architectures compared to existing uncertainty methods. The innovative GAN tests demonstrate
that the intermediate uncertainty values and their order relationships are meaningful, which shows a
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Figure 11: FashionMNIST percentage versus KL distance.

significant improvement from existing methods. We also demonstrate the potential of the logit-based
uncertainty measure in two applications.

Acknowledgement

The majority of this work is completed on Google Cloud Platform and we thank the Google Cloud
Platform research credit program for the research credits.

References

[1] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Herve Jegou. Fixing the train-test resolution discrepancy.
arXiv preprint arXiv 1906.06423, 2019

[2] Heinrich Jiang, Been Kim, Melody Y. Guan, and Maya Gupta. To trust or not to trust a classifier. NIPS, 2018

[3] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. NIPS, 2017.

[4] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty
in deep learning. ICML, pages 1050-1059, 2016.

[5] Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classification
uncertainty. NIPS, 2018

[6] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
networks. ICML, 2015

[7] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. NIPS, 2014

[8] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers for
detecting out-of-distribution samples. ICLR, 2018

[9] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected convolu-
tional networks. arXiv preprint arXiv 1608.06993v5, 2018

[10] Rob J. Hyndman. Computing and graphing high density regions. The American Statistician. Vol. 50, No. 2.
pp. 120-126, 1996

[11] Nicolas Papernot and Patrick McDaniel. Deep k-Nearest neighbors: Towards confident interpretable and
robust deep learning. arXiv preprint arXiv 1803.04765v1, 2018

[12] Eric J. Hartman, James D. Keeler, and Jacek M. Kowalski. Layered neural networks with Gaussian hidden
units as universal approximations. Neural Computation 2, pp. 210-215, 1990

[13] Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin Ghahramani.
Gaussian process behaviour in wide deep neural networks. /CLR, 2018

[14] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, Jascha Sohl-
Dickstein. Deep neural networks as Gaussian processes. ICLR, 2018

[15] Radford M. Neal. Priors for infinite networks (tech. rep. no. crg-tr-94-1). University of Toronto, 1994

12



[16] Yiming Xu and Diego Klabjan. Concept drift and covariate shift detection ensemble with lagged labels.
arXiv preprint arXiv 2012.04759v3, 2020

13



Appendix

Proof of Theorem 1

Let G(c) = >_;_, miNi, where N; is Gaussian. Consider ¢ neural networks that share the same trainable
parameters but the bias of the final layer. The bias of the final layer of i-th neural network are normally distributed
as ;. For each of the ¢ neural networks, Theorem 4 from Alexander et al. [13] applies. The output of each
of the neural networks converges in distribution to a Gaussian Process. Since we have a finite set of inputs, an
immediate result that follows is the outputs of the neural network are jointly Gaussian based on AN;". Finally,
consider the neural network with bias of the final layer based on distribution G(c). This neural network outputs
according to distribution N;* with probability 7;, therefore, the output of the neural network with Gaussian
Mixture final layer bias is Gaussian Mixture distributed.

|

Proof of Proposition 2

The g1-HDR of a Gaussian mixture for class 7 is the subset R(f1_q, ) of the sample space of X defined by
R(fi—q1) = {z : gmmi(z) > fi_q }, where fq, is the largest constant such that P(X € R(fi—q,)) > ¢1.
Therefore, for every © we have P(gmm;(z) < fi—q,) < 1 — g1 and thus P(In(gmm;(z)) < In(fi—q,)) <
1 —q1 and P(s;(z) < In(max¢(gmm;(t)/fi—q,))) > qi. In turn In(max¢(gmm;(t)/ fi—q,)) = Siq, . Since
forevery x € R(f1—q,) we have gmm;(z) > fi—q,, it follows s;(x) < In(max¢(gmm;(t)/f1—q,)) and thus
9i(s:(2)) < gi(In(max,(gmm;(t)/fi—q,))). Finally, we obtain g;(s;(z)) < gi(siq, ) and u(z) < u1. We
can similarly proof the statement for us.

|

Proof of Proposition 3

For every x we have P(z € R(fo)) > 1 — aand P(¢(z) > fo) > 1 — a. Using the probability density
function of multivariate Gaussian, we obtain P(r2(z) < 2 - In(fo - ¢)) > 1 — a where ¢ = (2m)*/2det(2)/2,
and k is the dimension of the Gaussian. In turn, P(r(z) < (2 - In(fa - ¢))'/?) > 1 — a. By definition of
cumulative distribution functions, we have ro = F~'(1 — a) = (2 - In(fa - ¢))'/?, and each z, = € R(fa)
implies ¢(x) > fo and thus r(x) < (2 % In(fa - ¢))'/?, which is equivalent to 7(z) < 74.

|
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