
Regret Bounds and Reinforcement Learning
Exploration of EXP-based Algorithms

Mengfan Xu
Northwestern University

Evanston, IL 60208
MengfanXu2023@u.northwestern.edu

Diego Klabjan
Northwestern University

Evanston, IL 60208
d-klabjan@northwestern.edu

Abstract
EXP-based algorithms are often used for exploration in multi-armed bandit. We
revisit the EXP3.P algorithm and establish both the lower and upper bounds of
regret in the Gaussian multi-armed bandit setting, as well as a more general
distribution option. The analyses do not require bounded rewards compared to
classical regret assumptions. We also extend EXP4 from multi-armed bandit to
reinforcement learning to incentivize exploration by multiple agents. The resulting
algorithm has been tested on hard-to-explore games and it shows an improvement
on exploration compared to state-of-the-art.

1 Introduction

Multi-armed bandit (MAB) is to maximize cumulative reward of a player throughout a bandit game
by choosing different arms at each time step. It is also equivalent to minimizing the regret defined
as the difference between the best rewards that can be achieved and the actual reward gained by the
player. Formally, given time horizon T , in time step t ≤ T the player choose one arm at among K
arms, receives rtat among rewards rt = (rt1, r

t
2, . . . , r

t
K), and maximizes the total reward

∑T
t=1 r

t
at

or minimizes the regret. Computationally efficient and with abundant theoretical analyses are the
EXP-type MAB algorithms. In EXP3.P, each arm has a trust coefficient (weight). The player samples
each arm with probability being the sum of its normalized weights and a bias term, receives reward of
the sampled arm and exponentially updates the weights based on the corresponding reward estimates.
It achieves the regret of the order O(

√
T) in a high probability sense. In EXP4, there are any number

of experts. Each has a sample rule over actions and a weight. The player samples according to the
weighted average of experts’ sample rules and updates the weights respectively.

Contextual bandit is a variant of MAB by adding context or state space S. At time step t, the player
has context st ∈ S with s1:T = (s1, s2, . . . , sT) being independent. Rewards rt follow F (µ(st))
where F is any distribution and µ(st) is the mean vector that depends on state st. Reinforcement
Learning (RL) generalizes contextual bandit, where state and reward transitions follow a Markov
Decision Process (MDP) represented by transition kernel P (st+1, r

t|at, st). A key challenge in RL
is the trade-off between exploration and exploitation. Exploration is to encourage the player to try
new arms in MAB or new actions in RL to understand the game better. It helps to plan for the future,
but with the sacrifice of potentially lowering the current reward. Exploitation aims to exploit currently
known states and arms to maximize the current reward, but it potentially prevents the player to gain
more information to increase local reward. To maximize the cumulative reward, the player needs to
know the game by exploration, while guaranteeing current reward by exploitation.

How to incentivize exploration in RL has been a main focus in RL. Since RL is built on MAB,
it is natural to extend MAB techniques to RL and UCB is such a success. UCB motivates count-
based exploration in RL and the subsequent Pseudo-Count exploration. New deep RL exploration
algorithms have been recently proposed. Using deep neural networks to keep track of the Q-values

Preprint. Under review.

ar
X

iv
:2

00
9.

09
53

8v
1

 [
cs

.L
G

]
 2

0
Se

p
20

20

by means of Q-networks in RL is called DQN [1]. This combination of deep learning and RL has
shown great success. ε-greedy [2] is a simple exploration technique using DQN. Besides ε-greedy,
intrinsic model exploration computes intrinsic rewards by focusing on experiences. Intrinsic rewards
directly measure and incentivize exploration if added to extrinsic (actual) rewards of RL, e.g. DORA
[3] and [4]. Random Network Distillation (RND) [5] is a more recent suggestion relying on a fixed
target network. A drawback of RND is its local focus without global exploration.

In order to address weak points of these various exploration algorithms in the RL context, the
notion of experts is natural and thus EXP-type MAB algorithms are appropriate. The allowance of
arbitrary experts provides exploration for harder contextual bandits and hence providing exploration
possibilities for RL. We develop an EXP4 exploration algorithm for RL that relies on several general
experts. This is the first RL algorithm using several exploration experts enabling global exploration.
Focusing on DQN, in the computational study we focus on two agents consisting of RND and
ε-greedy DQN.

MF: UPDATE We implement the RL EXP4 algorithm on the hard-to-explore RL game Montezuma’s
Revenge and compare it with the benchmark algorithm RND [5]. The numerical results show that
the algorithm gains more exploration than RND and it gains the ability of global exploration by not
getting stuck in local maximums of RND. Its total reward also increases with training. Overall, our
algorithm improves exploration and exploitation on the benchmark game and demonstrates a learning
process in RL.

Reward in RL in many cases is unbounded which relates to unbounded MAB rewards. There are three
major versions of MAB: Adversarial, Stochastic, and herein introduced Gaussian. For adversarial
MAB, rewards of the K arms rt can be chosen arbitrarily by the adversary at step t. For stochastic
MAB, the rewards at different steps are assumed to be i.i.d. and also the rewards of different arms are
independent. It is assumed that 0 ≤ rti ≤ 1 for any arm i and step t. For Gaussian MAB, rewards
rt follow multi-variate normal N (µ,Σ) with µ being the mean vector and Σ the covariance matrix
of the K arms. Here the rewards are neither bounded, nor independent among the arms. For this
reason the introduced Gaussian MAB reflects the RL setting and is the subject of our MAB analyses
of EXP3.P.

EXP-type algorithms [6] are optimal in the two classical MABs. [6] shows lower and upper bounds
on regret of the order O(

√
T) for adversarial MAB and of the order O(log(T)) for stochastic MAB.

All of the proofs of these regret bounds by EXP-type algorithms are based on the bounded reward
assumption, which does not hold for Gaussian MAB. Therefore, the regret bounds for Gaussian MAB
with unbounded rewards studied herein are significantly different from prior works.

We show both lower and upper bounds on regret of Gaussian MAB under certain assumptions. Some
analyses even hold for more generally distributed MAB. Upper bounds borrow some ideas from
the analysis of the EXP3.P algorithm [6] for bounded MAB to our unbounded MAB, while lower
bounds are by our brand new construction of instances. Precisely, we derive lower bounds of order T
for certain fixed T and upper bounds of order O∗(

√
T) for T being large enough. The question of

bounds for any value of T remains open.

The main contributions of this work are as follows. On the analytical side we introduce Gaussian
MAB with the unique aspect and challenge of unbounded rewards. We provide the very first regret
lower bound in such a case by constructing a novel family of Gaussian bandits and we are able to
analyze the EXP3.P algorithm for Gaussian MAB. Unbounded reward poses a non-trivial challenge
in the analyses. We also provide the very first extension of EXP4 to RL exploration. We show its
superior performance on two hard-to-explore RL games.

A literature review is provided in Section 2. Then in Section 3 we exhibit upper bounds for unbounded
MAB of the EXP3.P algorithm and lower bounds, respectively. Section 4 discusses the EXP4
algorithm for RL exploration. Finally, in Section 5, we present numerical results related to the
proposed algorithm.

2 Literature review

The importance of exploration in RL is well understood. Count-based exploration in RL relies
on UCB. [7] develops Bellman value iteration V (s) = maxa R̂(s, a) + γE[V (s′)] + βN(s, a)−

1
2 ,

2

where N(s, a) is the number of visits to (s, a) for state s and action a. Value N(s, a)−
1
2 is positively

correlated with curiosity of (s, a) and encourages exploration. This method is limited to tableau
model-based MDP for small state spaces, while [8] introduces Pseudo-Count exploration for non-
tableau MDP with density models.

In conjunction with DQN, ε-greedy [2] is a simple exploration technique using DQN. Besides ε-
greedy, intrinsic model exploration computes intrinsic rewards by the accuracy of a model trained
on experiences. Intrinsic rewards directly measure and incentivize exploration if added to extrinsic
(actual) rewards of RL, e.g. DORA [3] and [4]. Intrinsic rewards in [4] are defined as e(s, a) =
||σ(s′)−Mφ(σ(s), a)||22 whereMφ is a parametric model, s′ is the next state and σ is input extraction.
Intrinsic reward e(s, a) relies on stochastic transition from s to s′ and thus brings noise to exploration.
Random Network Distillation(RND) [5] addresses this by defining e(s, a) = ||f̂(s′)− f(s′)||22 where
f̂ is a parametric model and f is a randomly initialized but fixed model. Here e(s, a), independent
of the transition, only depends on state s′ and drives RND to outperform other algorithms on
Montezuma’s Revenge. None of these algorithms use several experts which is a significant departure
from our work.

In terms of MAB regret analyses focusing on EXP-type algorithms, Auer et al. [6] first introduce
EXP3.P for bounded adversarial MAB and EXP4 for contextual bandits. Under the EXP3.P algorithm,
an upper bound on regret of the order O(

√
T) is achieved, which has no gap with the lower bound

and hence it establishes that EXP3.P is optimal. However these regret bounds are not applicable to
Gaussian MAB since rewards can be infinite. Meanwhile for unbounded MAB, [9] demonstrates a
regret bound of order O(

√
T · γT) for noisy Gaussian process bandits where a reward observation

contains noise. The information gain γT is not well-defined in a noiseless Gaussian setting. For
noiseless Gaussian bandits, [10] shows both the optimal lower and upper bounds on regret, but the
regret definition is not consistent with the one used in [6]. We establish a lower bound of the order
O(T) for certain T and an upper bound of the order O∗(

√
T) asymptotically on regret of unbounded

noiseless Gaussian MAB following standard definitions of regret.

3 Regret bounds for Gaussian MAB

For Gaussian MAB with time horizon T , at step 0 < t ≤ T rewards rt follow multi-variate
normal N (µ,Σ) where µ = (µ1, µ2, . . . , µK) is the mean vector and Σ = (aij)i,j∈{1,...,K} is the
covariance matrix of the K arms. The player receives reward yt = rtat by pulling arm at. We use
R′T = T ·maxk µk−

∑
tE[yt] to denote pseudo regret called simply regret. (Note that the alternative

definition of regret RT = maxi
∑T
t=1 r

t
i −

∑T
t=1 yt depends on realizations of rewards.)

3.1 Lower bounds on regret

In this section we derive a lower bound for Gaussian and general MAB under an assumption. General
MAB replaces Gaussian with a general distribution. The main technique is to construct instances or
sub-classes that have certain regret, no matter what strategies are deployed. We need the following
assumption or setting.

Assumption 1 There are two types of arms with general K with one type being superior (S is
the set of superior arms) and the other being inferior (I is the set of inferior arms). Let 1− q, q be
the proportions of the superior and inferior arms, respectively which is known to the adversary and
clearly 0 ≤ q ≤ 1. The arms in S are indistinguishable and so are those in I . The first pull of the
player has two steps. In the first step the player selects an inferior or superior set of arms based on
P (S) = 1− q and P (I) = q and once a set is selected, the corresponding reward of an arm from the
selected set is received.

An interesting special case of Assumption 1 is the case of two arms and q = 1/2. In this case, the
player has no prior knowledge and in the first pull chooses an arm uniformly at random.

The lower bound is defined as RL(T) = inf supR′T , where, first, inf is taken among all the strategies
and then sup is among all Gaussian MAB. All proofs are in the Appendix.

The following is the main result with respect to lower bounds and it is based on inferior arms being
distributed as N (0, 1) and superior as N (µ, 1) with µ > 0.

3

Theorem 1. In Gaussian MAB under Assumption 1, for any q ≥ 1/3 we haveRL(T) ≥ (q−ε) ·µ ·T
where µ has to satisfy G(q, µ) < q with ε and T determined by

G(q, µ) < ε < q, T ≤ ε−G(q, µ)

(1− q) ·
∫ ∣∣∣e− x22 − e− (x−µ)2

2

∣∣∣ + 2

and G(q, µ) = max
{∫ ∣∣∣qe− x22 − (1− q)e−

(x−µ)2
2

∣∣∣ dx, ∫ ∣∣∣(1− q)e− x22 − qe− (x−µ)2
2

∣∣∣ dx} .
To prove Theorem 1, we construct a special subset of Gaussian MAB with equal variances and zero
covariances. On these instances we find a unique way to explicitly represent any policy. This builds a
connection between abstract policies and this concrete mathematical representation. Then we show
that pseudo regret R′T must be greater than certain values no matter what policies are deployed, which
indicates a regret lower bound on these subset of instances.

The feasibility of the aforementioned conditions is established in the following theorem.
Theorem 2. In Gaussian MAB under Assumption 1, for any q ≥ 1/3, there exist µ and ε, ε < µ such
that RL(T) ≥ (q − ε) · µ · T .

The following result with two arms and equal probability in the first pull deals /with general probabil-
ities. Even in the case of Gaussian MAB it is not a special case of Theorem 2 since it is stronger.
Theorem 3. For general MAB under Assumption 1 withK = 2, q = 1/2, we have thatRL(T) ≥ T ·µ

4

holds for any distributions f0 for the arms in I and f1 for the arms in S with
∫
|f1−f0| > 0 (possibly

with unbounded support), for any µ > 0 and T satisfying T ≤ 1
2·
∫
|f0−f1| + 1.

The theorem establishes that for any fixed µ > 0 there is a finite set of horizons T and instances of
Gaussian MAB so that no algorithm can achieve regret smaller than linear in T . Table 1 provides the
values of the relationship between µ and largest T in the Gaussian case where the inferior arms are
distributed based on the standard normal and the superior arms have mean µ > 0 and variance 1. For
example, there is no way to attain regret lower than T · 10−4/4 for any 1 ≤ T ≤ 2501. The function
decreases very quickly.

Table 1: Upper bounds for T as a function of µ

µ 10−5 10−4 10−3 10−2 10−1

Upper bound for T 25001 2501 251 26 3.5

The established lower bound result RL(T) ≥ O(T) is larger than known results of classical MAB.
This is not surprising since the rewards in classical MAB are assumed to be bounded, while rewards
in our setting follow an unbounded Gaussian distribution, which apparently increases regret.

Besides the known result O∗(
√
T) of adversarial MAB and O∗(log T) of stochastic MAB, for noisy

Gaussian Process bandits, [9] shows RL(T) ≥ O(
√
T · γT). Our lower bound for Gaussian MAB

is different from this lower bound. The information gain term γT in noisy Gaussian bandits is not
well-defined in Gaussian MAB and thus the two lower bounds are not comparable.

3.2 Upper bounds on regret

In this section, we establish upper bounds for regret of Gaussian MAB by means of the EXP3.P
algorithm (see Algorithm 1) from [6]. We stress that rewards can be infinite, without the bounded
assumption present in stochastic and adversarial MAB. We only consider non-degenerate Gaussian
MAB where variance of each arm is strictly positive, i.e. mini aii > 0.

Formally, we provide analyses for upper bounds on RT with high probability, on E[RT] and on R′T .
In [6] EXP3.P is studied to yield a bound on regret RT with high probability in the bounded MAB
setting. As part of our contributions, we show that EXP3.P regret is of the order O∗(

√
T) in the

unbounded Gaussian MAB in the case of RT with high probability, E[RT] and R′T . The results are
summarized as follows. The density of N (µ,Σ) is denoted by f .
Theorem 4. For Gaussian MAB, any time horizon T , for any 0 < η < 1, EXP3.P has regret

RT ≤ 4∆(η) · (
√
KT log(KTδ) + 4

√
5
3KT logK + 8 log(KTδ)) with probability (1− δ) · (1− η)T

4

Algorithm 1: EXP3.P

Initialization: Weights wi = exp (αδ3

√
T
K), i ∈ {1, 2, . . . ,K} for parameters α > 0 and δ ∈ (0, 1);

for t = 1, 2, . . . , T do
for i = 1, 2, . . . ,K do

pi(t) = (1− δ) wi(t)∑K
j=1 wj(t)

+ δ
K

end
Choose it randomly according to the distribution p1(t), . . . , pK(t);
Receive reward rit(t);
for j = 1, . . . ,K do

x̂j(t) =
rj(t)
pj(t)

· 1j=it , wj(t+ 1) = wj(t) exp δ
3K (x̂j(t) + α

pj(t)
√
KT

)

end
end

where ∆(η) is determined by∫∆

−∆
. . .
∫∆

−∆
f (x1, . . . , xK) dx1 . . . dxK = 1− η.

In the proof of Theorem 4, we first perform truncation of the rewards of Gaussian MAB by dividing
the rewards to a bounded part and unbounded tail throughout the game. For the bounded part, we
directly borrow the regret upper bound of EXP3.P [6] and conclude with the regret upper bound of
order O(∆(η)

√
T). Since a Gaussian distribution is a light-tailed distribution we can control the

probability of tail shrinking which leads to the overall result.

The dependence of the bound on ∆ can be removed by considering large enough T as stated next.
Theorem 5. For Gaussian MAB, and any a > 2, 0 < δ < 1, EXP3.P has regret

RT ≤ log(1/δ)O∗(
√
T) with probability (1− δ) · (1− 1

Ta)T .

The constant behind O∗ depends on K, a, µ and Σ.

The above theorems deal with RT but the aforementioned lower bounds are with respect to pseudo
regret. To complete the analysis of Gaussian MAB, it is desirable to have an upper bound on pseudo
regret which is established next. It is easy to verify by the Jensen’s inequality that R′T ≤ E[RT] and
thus it suffices to obtain an upper bound on E[RT].

For adversarial and stochastic MAB, the upper bound for E[RT] is of the same order as RT which
follows by a simple argument. For Gaussian MAB, establishing an upper bound on E[RT] or R′T
based on RT requires more work. We show an upper bound on E[RT] by using select mathematical
inequalities, limit theories, and Randemacher complexity. To this end, the main result reads as
follows.
Theorem 6. The regret of EXP3.P in Gaussian MAB satisfies

R′T ≤ E [RT] ≤ O∗(
√
T).

All these three theorems also hold for sub-Gaussian MAB, which is defined by replacing Gaussian
with sub-Gaussian. This generalization is straightforward and it is directly shown in the proof of
Gaussian MAB in Appendix. Optimal upper bounds for adversarial MAB and noisy Gaussian Process
bandits are of the same order as our upper bound. Work [6] derives an upper bound of the same order
O(
√
T) as the lower bound for adversarial and stochastic MAB. For noisy Gaussian Process bandits,

there is also no gap between its upper and lower bounds.

Our upper bound of the order O∗(
√
T) is of the same order as the one for bounded MAB. In our case

the upper bound result O∗(
√
T) holds for large enough T which is hidden behind O∗ while the linear

lower bounds is valid only for small values of T . This illustrates the rationality of the lower bound of
O(T) and the upper bound of order O∗(

√
T).

5

4 EXP4 algorithm for RL

EXP4 has shown great success in contextual bandits. Therefore, in this section, we extend EXP4 to
RL and develop EXP4-RL illustrated in Algorithm 2.

Algorithm 2: EXP4-RL
Initialization: Trust coefficients wk = 1 for any k ∈ {1, . . . , E}, E = number of experts
(Q-networks), K = number of actions, ∆, ε, η > 0 and temperature z, τ > 0, nr = −∞ (an upper
bound on reward);

while True do
Initialize episode by setting s0;
for i = 1, 2, . . . , T (length of episode) do

Observe state si;
Let probability of Qk-network be ρk = (1− η) wk∑E

k=1 wk
+ η

E ;

Sample network k̄ according to {ρk}k;
For Qk̄-network, use ε-greedy to sample an action

a∗ = argmaxaQk̄(si, a), πj = (1−ε)·1j=a∗+
ε

K − 1
·1j 6=a∗ j ∈ {1, 2, . . . ,K}

Sample action ai based on π;
Interact with the environment to receive reward ri and next state si+1;
nr = max{ri, nr};
Update the trust coefficient wk of each Qk-network as follows:

Pk = ε-greedy(Qk), x̂kj = 1− 1j=a

Pkj + ∆
(nr−ri), j ∈ 1, 2, . . . ,K, yk = E[x̂kj], wk = wk·e

yk
z

Store (si, ai, ri, si+1) in experience replay buffer B;
end
Update each expert’s Qk-network from buffer B;

end

The player has experts that are represented by deep Q-networks trained by RL algorithms (there
is a one to one correspondence between the experts and Q-networks). Each expert also has a trust
coefficient. Trust coefficients are also updated exponentially based on the reward estimates as in
EXP4. At each step of one episode, the player samples an expert (Q-network) with probability that is
proportional to the weighted average of expert’s trust coefficients. Then ε-greedy DQN is applied on
the chosen Q-network. Here different from EXP4, the player needs to store all the interaction tuples
in experience buffer since RL is a MDP. After one episode, the player trains all Q-networks with the
experience buffer and uses the trained networks as experts for the next episode.

The basic idea is the same as EXP4 by using the experts that give advice vectors with deepQ-networks.
It is a combination of deep neural networks with EXP4 updates. From a different perspective, we
can also view it as an ensemble in classification [11], by treating Q-networks as ensembles in RL,
instead of classification algorithms. While Q-networks do not necessarily have to be experts, i.e.,
other experts can be used, these are natural in a DQN framework.

In our implementation and experiments we use two experts, thus E = 2 with two Q-networks. The
first one is based on RND [5] while the second one is a simple DQN. To this end, in the algorithm
before storing to the buffer, we also record cir = ||f̂(si)− f(si)||2, the RND intrinsic reward as in
[5]. This value is then added to the 4-tuple pushed to B. When updating Q1 corresponding to RND
at the end of an iteration in the algorithm, by using rj + cjr we modify the Q1-network and by using
cjr an update to f̂ is executed. Network Q2 pertaining to ε-greedy is updated directly by using rj .

Intuitively, Algorithm 2 circumvents this drawback with the total exploration guided by two experts
with EXP4 updated trust coefficients. When the RND expert drives high exploration, its trust
coefficient leads to a high total exploration. When it has low exploration, the second expert DQN
should have a high one and it incentivizes the total exploration accordingly. Trust coefficients are
updated by reward estimates iteratively as in EXP4, so they keep track of the long-term performance

6

of experts and then guide the total exploration globally. These dynamics of EXP4 combined with
intrinsic rewards guarantees global exploration. The experimental results exhibited in the next section
verify this intuition regarding exploration behind Algorithm 2.

We point out that potentially more general RL algorithms based on Q-factors can be used, e.g., boost-
rapped DQN [12], random prioritized DQN [13] or adaptive ε-greedy VDBE [14] are a possibility.
Furthermore, experts in EXP4 can even be policy networks trained by PPO [15] instead of DQN for
exploration. These possibilities demonstrate the flexibility of the EXP4-RL algorithm.

5 Computational study

As a numerical demonstration of the superior performance and exploration incentive of Algorithm
2, we show the improvements on baselines on two hard-to-explore RL games, Mountain Car and
Montezuma’s Revenge. More precisely, we present that the real reward on Mountain Car improves
significantly by our algorithm in Section 5.1. Then for exploration incentive, we implement Algorithm
2 on Montezuma’s Revenge and show the growing and remarkable improvement of exploration on
baselines in Section 5.2.

For the Mountain Car experiment, we use the Adam optimizer with the 2 · 10−4 learning rate. The
batch size for updating models is 64 with the replay buffer size of 10,000. The remaining parameters
are as follows: the discount factor for the Q-networks is 0.95, the temperature parameter τ is 0.1,
η is 0.05, and ε is decaying exponentially with respect to the number of steps with maximum 0.9
and minimum 0.05. The length of one epoch is 200 steps. The target networks load the weights and
biases of the trained networks every 400 steps. Since a reward upper bound is known in advance, we
use nr = 1.

For the Montezuma’s Revenge experiment, we use the Adam optimizer with the 10−5 learning rate.
The other parameters read: the mini batch size is 4, replay buffer size is 1,000, the discount factor
for the Q-networks is 0.999 and the same valus is used for the intrinsic value head, the temperature
parameter τ is 0.1, η is 0.05, and ε is increasing exponentially with minimum 0.05 and maximum 0.9.
The length of one epoch is 100 steps. Target networks are updated every 300 steps. Pre-normalization
is 50 epochs and the weights for intrinsic and extrinsic values in the first network are 1 and 2,
respectively. The upper bound on reward is set to be constant nr = 1.

Intrinsic reward cir = ||f̂(si) − f(si)||2 given by intrinsic model f̂ represents the exploration of
RND in [5] as introduced in Sections 2 and 4. We use the same criterion for evaluating exploration
performance of our algorithm and RND herein. RND incentivizes local exploration with the single
step intrinsic reward but with the absence of global exploration.

5.1 Mountain Car

In this part, we summarize the experimental results of Algorithm 2 on Mountain Car, a classical
control RL game. This game has very sparse positive rewards, which brings the necessity and
hardness of exploration. Blog post [16] shows RND based on DQN improves the performance of
traditional DQN, since RND has intrinsic reward to incentivize exploration. We use RND on DQN
from [16] as the baseline and show the real reward improvement of Algorithm 2, which supports the
intuition and superiority of the algorithm.

The neural networks of both experts are linear. For the RND expert, it has the input layer with 2 input
neurons, followed by a hidden layer with 64 neurons, and then a two-headed output layer. The first
output layer represents the Q values with 64 hidden neurons as input and the number of actions output
neurons, while the second output layer corresponds to the intrinsic values, with 1 output neuron. For
the DQN expert, the only difference lies in the absence of the second output layer.

The comparison between Algorithm 2 and RND is presented in Figure 1. Here the x-axis is the
epoch number and the y-axis is the cumulative reward of that epoch. Figure 1a shows the raw
data comparison between EXP4-RL and RND. We observe that though at first RND has several
spikes exceeding those of EXP4-RL, EXP4-RL has much higher rewards than RND after 300 epochs.
Overall, the relative difference of areas under the curve (AUC) is 4.9% for EXP4-RL over RND,
which indicates the significant improvement of our algorithm. This improvement is better illustrated
in Figure 1b with the smoothed reward values. Here there is a notable difference between EXP4-RL

7

and RND. Note that the maximum reward hit by EXP4-RL is −86 and the one by RND is −118,
which additionally demonstrates our improvement on RND.

(a) original (b) smooth

Figure 1: The performance of Algorithm 2 and RND measured by the epoch-wise reward on Mountain
Car, with the left one being the original data and the right being the smoothed reward values.

Based on the above discussions on Mountain Car, we arrive to the conclusion that Algorithm 2
performs better than the RND baseline and that the improvement increases at the later training
stage. Exploration brought by Algorithm 2 gains real reward on this hard-to-explore Mountain Car,
compared to the RND counterpart (without the DQN expert). The power of our algorithm with
multiple experts and trust coefficients could be enhanced by adopting more complex experts, not
limited to only DQN.

5.2 Montezuma’s Revenge and Pure exploration setting

In this section, we show the experimental details of Algorithm 2 on Montezuma’s Revenge, another
notoriously hard-to-explore RL game. The benchmark on Montezuma’s Revenge is RND based
on DQN which achieves a reward of zero in our environment (the PPO algorithm reported in [5]
has reward 8,000 with many more computing resources; we ran the PPO-based RND with 10
environments and 800 epochs to observe that the reward is also 0), which indicates that DQN has
room for improvement regarding exploration.

To this end, we first implement the DQN-version RND on Montezuma’s Revenge as our benchmark
by replacing the PPO architecture in [5] with DQN. Then we implement Algorithm 2 with two experts
as aforementioned.

The experiment of RND with PPO in [5] uses 1024 parallel environments and runs 30,000 epochs for
each environment. For the DQN-version of RND (called simply RND hereafter), we use the same
settings as in [5], such as observations, intrinsic reward normalization and random initialization. Our
computing environment allows at most 10 parallel environments. In subsequent figures the x-axis
always corresponds to the number of epochs. RND update probability is the proportion of experience
in the replay buffer that are used for training the intrinsic model f̂ in RND (see [5]).

We use CNN architectures since we are dealing with videos. More precisely, for the Q-network of
the DQN expert in EXP4-RL and the predictor network f̂ for computing the intrinsic rewards, we
use Alexnet [17] pretrained on ImageNet [18]. The number of output neurons of the final layer is
18, the number of actions in Montezuma. For the RND baseline and RND expert in EXP4-RL, we
customize the Q-network with different linear layers while keeping all the layers except the final
layer of pretrained Alexnet. Here we have two final linear layers representing two value heads, the
extrinsic value head and the intrinsic value head. The number of output neurons in the first value
head is again 18, while the second value head is with 1 output neuron.

A comparison between Algorithm 2 (EXP4-RL) and RND without parallel environments (the update
probability is 100% since it is a single environment) is shown in Figure 2 with the emphasis on
exploration by means of the intrinsic reward. We use 3 different numbers of burn-in periods (58,

8

68, 167 burn-in epochs) to remove the initial training steps, which is common in Gibbs sampling.
Overall EXP4-RL outperforms RND with many significant spikes in the intrinsic rewards. The larger
the number of burn-in periods is, the more significant is the dominance of EXP4-RL over RND.
EXP4-RL has much higher exploration than RND at some epochs and stays close to RND at other
epochs. At some epochs, EXP4-RL even has 6 times higher exploration. The relative difference in
the areas under the curves are 6.9%, 17.0%, 146.0%, respectively, which quantifies the much better
performance of EXP4-RL.

(a) small (b) medium (c) large

Figure 2: The performance of Algorithm 2 and RND measured by intrinsic reward without parallel
environments with three different burn-in periods

We next compare EXP4-RL and RND with 10 parallel environments and different RND update
probabilities in Figure 3. The experiences are generated by the 10 parallel environments and are
stored in the replay buffer.

Figure 3a shows that both experts in EXP4-RL are learning with decreasing losses of their respective
Q-networks. The drop is steeper for the RND expert but it also starts with a higher loss. With RND
update probability 0.25 in Figure 3b we observe that EXP4-RL and RND are very close when RND
exhibits high exploration. When RND is at its local minima, EXP4-RL outperforms it. Usually these
local minima are driven by sticking to local maxima and then training the model intensively at local
maxima, typical of the RND local exploration behavior. EXP4-RL improves on RND as training
progresses, e.g. the improvement after 550 epochs is higher than the one between epochs 250 and 550.
In terms for AUC, this is expressed by 1.6% and 3.5%, respectively. Overall, EXP4-RL improves
RND local minima of exploration, keeps high exploration of RND and induces a smoother global
exploration.

With the update probability of 0.125 in Figure 3c, EXP4-RL almost always outperforms RND with a
notable difference. The improvement also increases with epochs and is dramatically larger at RND’s
local minima. These local minima appear more frequently in training of RND, so our improvement
is more significant as well as crucial. The relative AUC improvement is 49.4%. The excellent
performance in Figure 3c additionally shows that EXP4-RL improves RND with global exploration
by improving local minima of RND or not staying at local maxima.

(a) Q-network losses with 0.25 up-
date

(b) Intrinsic reward after smoothing
with 0.25 update

(c) Intrinsic reward after smoothing
with 0.125 update

Figure 3: The performance of Algorithm 2 and RND with 10 parallel environments and with RND
update probability 0.25 and 0.125, measured by loss and intrinsic reward.

9

Overall, with either 0.25 or 0.125, EXP4-RL incentivizes global exploration on RND by not getting
stuck in local exploration maxima and outperforms RND exploration aggressively. With 0.125 the
improvement with respect to RND is more significant and steady. These experimental evidence
exactly verifies our intuition behind EXP4-RL and provides excellent support for the algorithm.
With experts being more advanced RL exploration algorithms, e.g. DORA [3], EXP4-RL can bring
additional possibilities.

10

A Proof of results in Section 3.1

For brevity, we define n = T − 1.

We start by showing the following proposition that is used in the proofs.
Proposition 1. Let G(q, µ), q, and µ be defined as in Theorem 1. Then for any q ≥ 1/3, there exists
a µ that satisfies the constraint G(q, µ) < q.

Proof. Let us denote G1 =
∫
|qf0(x)− (1− q)f1(x)| dx,G2 =

∫
|(1− q)f0(x)− qf1(x)| dx.

Then we have

G1(q, µ) =

∫
|qf0(x)− (1− q)f1(x)| dx

=

∫
(qf0(x)− (1− q)f1(x))1qf0(x)>(1−q)f1(x)dx

+

∫
(−qf0(x) + (1− q)f1(x))1qf0(x)<(1−q)f1(x)dx

=

∫
(qf0(x)− (1− q)f1(x))1x<g(µ)dx+

∫
(−qf0(x) + (1− q)f1(x))1x>g(µ)dx

=
1√
2π

[∫ g(µ)

−∞

(
qe−

x2

2 − (1− q)e−
(x−µ)2

2

)
dx+

∫ ∞
g(µ)

(
−qe− x

2

2 + (1− q)e−
(x−µ)2

2

)
dx

]

=
1√
2π

[
q

∫ g(µ)

−g(µ)

e−
x2

2 − (1− q)
∫ g(µ)−µ

−g(µ)+µ

e−
x2

2

]

where g(µ) = 1
2 · µ−

log(1−q
q)

µ . Similarly we get

G2(q, µ) =
1√
2π

[
(1− q)

∫ g(µ)

−g(µ)

e−
x2

2 − q
∫ g(µ)−µ

−g(µ)+µ

e−
x2

2

]
.

It is easy to establish continuity of G1(q, µ) and G2(q, µ) on [0,∞), as well as the continuity of
G(q, µ). Indeed, we have

G(q, µ) =

{
|1− 2q| µ = 0

max(q, 1− q) µ→∞ .

Since q ≥ 1
3 , then |1 − 2q| < q. From continuity of G(q, µ), there exists µ0 > 0 such that

G(q, µ) < q for any µ ≤ µ0.

Proof of Theorem 1. As in Assumption 1, let the inferior arm set be I and the superior one be S,
respectively, P (I) = q and P (S) = 1− q. Arms in I follow f0(x) = N (0, 1) and arms in S follow
f1(x) = N (µ, 1) where µ > 0. According to Assumption 1, at the first step the player pulls an arm
from either I or S and receives reward y1. At time step i > 1, the reward is yi and let bi represent a
policy of the player. We can always define bi as

bi =

{
1 if the chosen arm at step i is not in the same arm set as the initial arm,
0 otherwise.

Let ai ∈ {0, 1} be the actual arm played at step i. It suffices to only specify ai is in arm set I (ai = 0)
or S (ai = 1) since the arms in I and S are identical. The connection between ai and bi is explicitly
given by bi = |ai − a1|. By Assumption 1, it is easy to argue that bi = S′i(y1, y2, ..., yi−1) for a set
of functions S′2, S

′
3, . . . , S

′
n, S

′
n+1. We proceed with the following lemma.

Lemma 1. Let the rewards of the arms in set I follow any L1 distribution f0(x) and in set S follow
any L1 distribution f1(x) where the means satisfy µ(f1) > µ(f0). Let B be the number of arms
played in the game in set S. Let us assume the player meets Assumption 1. Then no matter what
strategy the player takes, we have

11

∣∣∣E[B]−(1−q)·(n+1)
n+1

∣∣∣ ≤ ε
where ε, T, f0, f1 satisfy

G(q, f0, f1) + (1− q)(n− 1)
∫
|f0(x)− f1(x)| ≤ ε,

G(q, f0, f1) = max
{∫
|qf0(x)− (1− q)f1(x)| dx,

∫
|(1− q)f0(x)− qf1(x)| dx

}
.

Proof. We have

E[B] =

∫
(a1 + a2 + · · ·+ an+1) fa1 (y1) fa2 (y2) . . . fan (yn) dy1dy2 . . . dyn.

If a1 = 0, then ai = bi and

E [B|a1 = 0] =

∫
(0 + b2 (y1:1) + . . .+ bn+1 (y1:n)) f0 (y1) fb2 (y2) . . . fbn (yn) dy1dy2 . . . dyn.

If a1 = 1, then 1− ai = bi and

E [B|a1 = 1] =

∫
(1 + 1− b2 (y1:1) + · · ·+ 1− bn+1 (y1:n)) f1 (y1) . . . f1−bn (yn) dy1dy2 . . . dyn.

This gives us

E[B] = q · E [B|a1 = 0] + (1− q) · E [B|a1 = 1]

= (1− q)(n+ 1)

+

∫
(b2 + · · ·+ bn+1) · (q · f0 (y1) . . . fbn (yn)− (1− q) · f1 (y1) . . . f1−bn (yn)) dy1dy2 . . . dyn.

By defining b1 = 0, we have

E[B] = (1− q) · (n+ 1)+∫
(b2 + · · ·+ bn+1) (q · fb1 (y1) . . . fbn (yn)− (1− q) · f1−b1 (y1) . . . f1−bn (yn)) dy1dy2 . . . dyn.

For any 1 ≤ m ≤ n we also derive∫ ∣∣∣∣∣
m∏
i=1

fbi (yi)−
m∏
i=1

f1−bi (yi)

∣∣∣∣∣ dy1dy2 . . . dym

≤
∫ m−1∏

i=1

fbi (yi) |fbm (ym)− f1−bm (yn)| dy1dy2 . . . dym+

∫ ∣∣∣∣∣
m−1∏
i=1

fbi (yi)−
m−1∏
i=1

f1−bi (yi)

∣∣∣∣∣ f1−bm (ym) dy1dy2 . . . dym

≤
∫
|f0(x)− f1(x)| dx+

∫ ∣∣∣∣∣
m−1∏
i=1

fbi (yi)−
m−1∏
i=1

f1−bi (yi)

∣∣∣∣∣ f1−bm (ym) dy1dy2 . . . dym

=

∫
|f0(x)− f1(x)| dx+

∫ ∣∣∣∣∣
m−1∏
i=1

fbi (yi)−
m−1∏
i=1

f1−bi (yi)

∣∣∣∣∣ dy1dy2 . . . dym−1

≤ 2 ·
∫
|f0(x)− f1(x)| dx+

∫ ∣∣∣∣∣
m−2∏
i=1

fbi (yi)−
m−2∏
i=1

f1−bi (yi)

∣∣∣∣∣ dy1dy2 . . . dym−2

≤ m
∫
|f0(x)− f1(x)| .

(1)

12

This provides∣∣∣∣E[B]− (1− q) · (n+ 1)

n+ 1

∣∣∣∣
≤
∫ ∣∣∣∣∣q ·

n∏
i=1

fbi (yi)− (1− q) ·
n∏
i=1

f1−bi (yi)

∣∣∣∣∣ dy1dy2 . . . dyn

≤
∫ n−1∏

i=1

fbi (yi) |q · fbn (yn)− (1− q) · f1−bn (yn)| dy1dy2 . . . dyn+

∫ ∣∣∣∣∣(1− q) ·
n−1∏
i=1

fbi (yi)− (1− q) ·
n−1∏
i=1

f1−bi (yi)

∣∣∣∣∣ f1−bn (yn) dy1dy2 . . . dyn

≤ max

{∫
|q · f0(x)− (1− q) · f1(x)| dx,

∫
|(1− q) · f0(x)− q · f1(x)| dx

}
+

(1− q) ·
∫ ∣∣∣∣∣

n−1∏
i=1

fbi (yi)−
n−1∏
i=1

f1−bi (yi)

∣∣∣∣∣ dy1dy2 . . . dyn−1

≤ max

{∫
|q · f0(x)− (1− q) · f1(x)| dx,

∫
|(1− q) · f0(x)− q · f1(x)| dx

}
+

(1− q) · (n− 1) ·
∫
|f0(x)− f1(x)| ,

where the last inequality follows from (1).The statement of the lemma now follows.

According to Proposition 1, there is such µ satisfying the constraint G(q, µ) < q. Note that
G(q, µ) = G(q, f0, f1). Then we can choose ε to be any quantity such that G(q, µ) < ε < q. Finally,
there is T satisfying T ≤ ε−G(q,µ)

(1−q)·
∫
|f0(x)−f1(x)| + 2 that gives us

G(q, µ) + (1− q)(T − 2)
∫
|f0(x)− f1(x)| ≤ ε.

By choosing ε, T, µ as above, by Lemma 1 we have∣∣∣∣E[B]− (1− q) · T
T

∣∣∣∣ < ε,

which is equivalent to E[B] < (1 − q + ε) · T . Therefore, regret R′T satisfies, with A being the
number of arm pulls from I , inequality

R′T =
∑
t

max
k

(µk)−
∑
t

E[yt] = Tµ−
∑
t

E[yt] = Tµ− (E[B] · µ+ E[A] · 0)

≥Tµ− (1− q + ε)µT = (q − ε)µT.

This yields RLT = inf supR′T ≥ (q − ε) · µT.

Theorem 2 follows from Theorem 1 and Proposition 1.

Proof of Theorem 3. The assumption here is the special case of Assumption 1 where there are two
arms and q = 1/2. Set I follows f0 and S follows f1 where µ(f0) < µ(f1).

In the same was as in the proof of Theorem 1 we obtain

RL(T) ≥
(

1
2 − ε

)
· T · µ

under the constraint that n/2 ·
∫
|f0 − f1| = n/2 ·TV(f0, f1) < ε where TV stands for total variation.

Here we use G(1/2, µ) = 1/2 · TV(f0, f1). Setting ε = 1/4 yields the statement.

13

In the Gaussian case it turns out that ε = 1/4 yields the highest bound. For total variation of Gaussian
variables N(µ1, σ

2
1) and N(µ2, σ

2
2), [19] show that

TV
(
N
(
µ1, σ

2
1

)
,N
(
µ2, σ

2
2

))
≤ 3|σ2

1−σ
2
2|

2σ2
1

+ |µ1−µ2|
2σ1

,

which in our case yields TV ≤ µ
2 . From this we obtain µ · T ≥ ε and in turn RLT ≥ ε · (1

2 − ε). The
maximum of the right-hand side is obtained at ε = 1

4 . This justifies the choice of ε in the proof of 3.

B Proof of results in Section 3.2

B.1 Proof for Theorem 4

Proof. Since the rewards can be unbounded in our setting, we consider truncating the reward with
any ∆ > 0 for any arm i by rti = r̄ti + r̂ti where

r̄ti = rti · 1(−∆≤rti≤∆), r̂
t
i = rti · 1(|rti |>∆).

Then for any parameter 0 < η < 1, we choose such ∆ that satisfies

P (rti = r̄ti , i ≤ K) = P (−∆ ≤ rt1 ≤ ∆, . . . ,−∆ ≤ rtK ≤ ∆)

=

∫ ∆

−∆

∫ ∆

−∆

. . .

∫ ∆

−∆

f(x1, . . . , xK)dx1 . . . dxK ≥ 1− η . (2)

The existence of such ∆ = ∆(η) follows from elementary calculus.

Let A = {|rti | ≤ ∆ for every i ≤ K, t ≤ T}. Then the probability of this event is

P (A) = P (rti = r̄ti , i ≤ K, t ≤ T) ≥ (1− η)T .

With probability (1− η)T , the rewards of the player are bounded in [−∆,∆] throughout the game.
Then RBT =

∑T
t=1(maxi r̄

t
i − r̄it) ≤ T ·∆ −

∑T
t=1 rt is the regret under event A, i.e. RT = RBT

with probability (1− η)T . For the EXP3.P algorithm and RBT , for every δ > 0, according to [6] we
have

RBT ≤ 4∆

(√
KT log(

KT

δ
) + 4

√
5

3
KT logK + 8 log(

KT

δ
)

)
with probability 1− δ.

Then we have

RT ≤ 4∆(η)
(√

KT log(KTδ) + 4
√

5
3KT logK + 8 log(KTδ)

)
with probability (1−δ)·(1−η)T .

B.2 Proof for Theorem 5

Lemma 2. For any non-decreasing differentiable function ∆ = ∆(T) > 0 satisfying

limT→∞
∆(T)2

log(T) =∞, limT→∞∆′(T) ≤ C0 <∞,

and any 0 < δ < 1, a > 2 we have

P
(
RT ≤ ∆(T) · log(1/δ) ·O∗(

√
T)
)
≥ (1− δ)

(
1− 1

T a

)T
for any T large enough.

14

Proof. Let a > 2 and let us denote

F (y) =

∫ y

−y
f(x1, x2, . . . , xK)dx1dx2 . . . dxK ,

ζ(T) = F (∆(T) · 1)−
(

1− 1

T a

)
for y ∈ RK and 1 = (1, . . . , 1) ∈ RK . Let also y−i = (y1, . . . , yi−1, yi+1, . . . , yK) and x|xi=y =
(x1, . . . , xi−1, y, xi+1, . . . , xK). We have limT→∞ ζ(T) = 0.

The gradient of F can be estimated as

∇F ≤

(∫ y−1

−y−1

f (x|x1=y1) dx2 . . . dxK , . . . ,

∫ y−K

−y−K
f (x|xK=yK) dx1 . . . dxK−1

)
.

According to the chain rule and since ∆′(T) ≥ 0, we have

dF (∆(T) · 1)

dT
≤
∫ ∆(T)·1−1

−∆(T)·1−1

f
(
x|x1=∆(T)

)
dx2 . . . dxK ·∆′(T)+

. . .+

∫ ∆(T)·1−K

−∆(T)·1−K

f
(
x|xK=∆(T)

)
dx1 . . . dxK−1 ·∆′(T).

Next we consider∫ ∆(T)1−i

−∆(T)1−i

f
(
x|xi=∆(T)

)
dx1 . . . dxi−1dxi+1 . . . dxK

= e−
1
2aii(∆(T))2+µi∆(T) ·

∫ ∆(T)1−i

−∆(T)1−i

eg(x−i)dx1 . . . dxi−1dxi+1 . . . dxK .

Here eg(x−i) is the conditional density function given xi = ∆(T) and thus∫∆(T)1−i
−∆(T)1−i

eg(x−i)dx1 . . . dxi−1dxi+1 . . . dxK ≤ 1. We have∫ ∆(T)1−i

−∆(T)1−i

f
(
x|xi=∆(T)

)
dx1 . . . dxi−1dxi+1 . . . dxK

≤ e− 1
2aii(∆(T))2+µi∆(T)

≤ e− 1
2 minj ajj(∆(T))2+maxj µj∆(T).

Then for T ≥ T0 we have ∆′T ≤ C0 + 1 and in turn

ζ ′(T) ≤ (C0 + 1) ·K · e− 1
2 minj ajj(∆(T))2+maxj µj∆(T) − a · T−a−1.

Since we only consider non-degenerate Gaussian bandits with min aii > 0, µi are constants and
∆(T)→∞ as T →∞ according to the assumptions in Lemma 2, there exits C1 > 0 and T1 such
that

e−
1
2 minj ajj(∆(T))2+maxj µj∆(T) ≤ e−C1∆(T)2 for every T > T1.

Since limT→∞
∆(T)2

log(T) =∞, we have

∆(T)2 > 2(a+1)
C1

· log(T) for T > T2.

These give us that

ζ(T)′ ≤ (C0 + 1)Ke−2(a+1) log T − aT−a−1

= (C0 + 1)Ke−2(a+1) log T − ae−(a+1) log T

< 0 for T ≥ T3 ≥ max(T0, T1, T2).

15

This concludes that ζ ′(T) < 0 for T ≥ T3. We also have limT→∞ ζ(T) = 0 according to the
assumptions. Therefore, we finally arrive at ζ(T) > 0 for T ≥ T3. This is equivalent to∫ ∆(T)·1

−∆(T)·1
f (x1, . . . , xK) dx1 . . . dxK ≥ 1− 1

T a
,

i.e. the rewards are bounded by ∆(T) with probability 1− 1
Ta . Then by the same argument for T

large enough as in the proof of Theorem 4, we have

P
(
RT ≤ ∆(T) · log(1/δ) ·O∗(

√
T)
)
≥ (1− δ)(1− 1

T a
)T .

Proof of Theorem 5. In Lemma 2, we choose ∆(T) = log(T), which meets all of the assumptions.
The result now follows from log T ·O∗(

√
T) = O∗(

√
T), Lemma 2 and Theorem 4.

B.3 Proof for Theorem 6

We first list 3 known lemmas. The following lemma by John Duchi [20] provides a way to bound
deviations.
Lemma 3. For any function class F , and i.i.d. random variable {x1, x2, . . . , xT }, the result

Ex

[
supf∈F

∣∣∣Exf − 1
T

∑T
t=1 f (xt)

∣∣∣] ≤ 2RcT (F)

holds where RcT (F) = Ex,σ

[
supf

∣∣∣ 1
T

∑T
t=1 σtf (xt)

∣∣∣] and σt is a {−1, 1} random walk of t steps.

The following result holds according to [21].

Lemma 4. For any subclass A ⊂ F , we have R̂cT ≤ R(A, T) ·
√

2 log |A|
T , where R(A, T) =

supf∈A

(∑T
t=1 f(xt)

) 1
2

and R̂cT = supf

∣∣∣ 1
T

∑T
t=1 σtf (xt)

∣∣∣.
A random variable X is σ2-sub-Gaussian if for any t > 0, the tail probability satisfies

P (|X| > t) ≤ Be−σ
2t2 ,

where B is a positive constant. The following lemma is listed in the Appendix A of [22].
Lemma 5. For i.i.d. σ2-sub-Gaussian random variables {Y1, Y2, . . . , YT }, we have

E [max1≤t≤T |Yt|] ≤ σ
√

2 log T + 4σ√
2 log T

.

Proof for Theorem 6. Let us define F = {fj : x→ xj |j = 1, 2, . . . ,K}. Let xt = (rt1, r
t
2, . . . , r

t
K)

where rti is the reward of arm i at step t and let at be the arm selected at time t by EXP3.P. Then for
any fj ∈ F , fj(xt) = rtj . In Gaussian-MAB, {x1, x2, . . . , xT } are i.i.d. random variables since the
Gaussian distribution N (µ,Σ) is invariant to time and independent of time. Then by Lemma 3, we
have

E
[
maxi

∣∣∣µi − 1
T

∑T
t=1 r

t
i

∣∣∣] ≤ 2RcT (F).

16

We consider

E [|R′T −RT |] = E

[∣∣∣∣∣T ·max
i
µi −

T∑
t=1

µat −

(
max
i

T∑
t=1

rti −
T∑
t=1

rtat

)∣∣∣∣∣
]

= E

[∣∣∣∣∣T ·max
i
µi −max

i

T∑
t=1

rti −

(
T∑
t=1

µat −
T∑
t=1

rtat

)∣∣∣∣∣
]

≤ E

[∣∣∣∣∣T ·max
i
µi −max

i

T∑
t=1

rti

∣∣∣∣∣
]

+ E

[∣∣∣∣∣
T∑
t=1

µat −
T∑
t=1

rtat

∣∣∣∣∣
]

≤ E

[
max
i

∣∣∣∣∣T · µi −
T∑
t=1

rti

∣∣∣∣∣
]

+ E

[∣∣∣∣∣
T∑
t=1

µat −
T∑
t=1

rtat

∣∣∣∣∣
]

≤ 2TRcT (F) + 2T1R
c
T1

(F) + · · ·+ 2TKR
c
TK (F)

(3)

where Ti is the number of pulls of arm i. Clearly T1 + T2 + . . . + TK = T . By Lemma 4 with
A = F we get

RcT (F) = E
[
R̂cT (F)

]
≤ E[R(F, T)] ·

√
2 logK

T
,

RcTi(F) ≤ E [R (F, Ti)] ·
√

2 logK

Ti
i = {1, 2, , . . . ,K}.

Since R(F, T) is increasing in T and Ti ≤ T , we have RcTi(F) ≤ E [R (F, T)] ·
√

2 logK
Ti

.

We next bound the expected deviation E [|R′T −RT |] based on (3) as follows

E [|R′T −RT |] ≤ 2TE[R(F, T)]

√
2 logK

T
+

K∑
i=1

[
2TiE[R(F, T)]

√
2 logK

Ti

]
≤ 2(K + 1)

√
2 logKE[R(F, T)]. (4)

Regarding E[R(F, T)], we have

E[R(F, T)] = E

sup
f∈F

(
T∑
t=1

f(xt)

) 1
2

 = E

sup
i

(
T∑
t=1

(rti)
2

) 1
2

≤ E

 K∑
i=1

(
T∑
t=1

(rti)
2

) 1
2

 ≤ K∑
i=1

E

[(
T · max

1≤t≤T
(rit)

2

) 1
2

]

=
√
T ·

K∑
i=1

E

[
max

1≤t≤T
|rti |
]
. (5)

We next use Lemma 5 for any arm i. To this end let Yt = rti . Since xt are Gaussian, the marginals
Yt are also Gaussian with mean µi and standard deviation of aii. Combining this with the fact
that a Gaussian random variable is also σ2-sub-Gaussian justifies the use of the lemma. Thus
E
[
max1≤j≤T |rji |

]
≤ ai,i ·

√
2 log T +

4ai,i√
2 log T

.

Continuing with (5) we further obtain

E[R(F, T)] ≤
√
T ·K ·max

i

(
ai,i
√

2 log T +
4ai,i√
2 log T

)
=

(
K
√

2T log T +
4
√
T√

2 log T

)
·max

i
ai,i. (6)

17

By combining (4) and (6) we conclude

E [|R′T −RT |] ≤ 2(K + 1)
√

2 logK ·max
i
ai,i ·

(
K
√

2T log T +
4
√
T√

2 log T

)
= O∗(

√
T).

(7)

We now turn our attention to the expectation of regret E[RT]. It can be written as

E [RT] = E
[
RT1RT≤O∗(

√
T)

]
+ E

[
RT1RT>O∗(

√
T)

]
≤ O∗(

√
T)P

(
RT ≤ O∗(

√
T)
)

+ E
[
RT1RT>O∗(

√
T)

]
≤ O∗(

√
T) + E

[
RT1RT>O∗(

√
T)

]
= O∗(

√
T) + E

[
RT1O∗(

√
T)<RT<O∗(

√
T)+E[RT]

]
+ E

[
RT1RT≥O∗(

√
T)+E[RT]

]
. (8)

We consider δ = 1/
√
T and η = T−a for a > 2. We have

lim
T→∞

(1− δ)(1− η)T = lim
T→∞

(1− δ)(1− 1

T a
)T

= lim
T→∞

(1− δ)(1− 1

T a
)(Ta)· TTa = lim

T→∞
e
T
Ta

and
lim
T→∞

(
1− (1− δ)(1− η)T

)
· log T · T = lim

T→∞
(1− e T

Ta) · log(T) · T

≤ lim
T→∞

log(T) · T · T 1−a = lim
T→∞

T 2−a · log(T) = 0.
(9)

Let P1 = P
(
RT ≤ log(1/δ)O∗(

√
T)
)

which equals to P
(
RT ≤ O∗(

√
T)
)

since log(1/δ) =

log(
√
T) = O∗(

√
T). By Theorem 5 we have P1 = (1− δ) · (1− η)T .

Note that E[RT] ≤ C0 log(T) · T as shown by

E[RT] = E

[
max
i

T∑
t=1

rti −
T∑
t=1

rtat

]
≤ 2E

[
max
i

T∑
t=1

|rti |

]
≤ 2T · E

[
max
i

max
t
|rti |
]

≤ 2T ·
K∑
i=1

E
[
max
t
|rti |
]
≤ 2T ·

K∑
i=1

(
ai,i
√

2 log T +
4ai,i√
log T

)

≤ 2T ·
K∑
i=1

max
i
ai,i

(√
2 log T +

4√
log T

)
≤ C0 · T · log(T)

for a constant C0.

The asymptotic behavior of the second term in (8) reads

E
[
RT1O∗(

√
T)<RT<O∗(

√
T)+E[RT]

]
= E

[
RT1RT−O∗(

√
T)∈(0,E[RT])

]
= E

[(
RT −O∗(

√
T)
)
1RT−O∗(

√
T)∈(0,E[RT])

]
+O∗(

√
T)

≤ E [RT]P
(
RT −O∗(

√
T) ∈ (0, E [RT])

)
+O∗(

√
T)

≤ E [RT]P
(
RT −O∗(

√
T) > 0

)
+O∗(

√
T)

≤ C0 log(T) · T · (1− P1) +O∗(
√
T) = O∗(

√
T)

where at the end we use (9).

18

Regarding the third term in (8), we note that R′T ≤ E[RT] by the Jensen’s inequality. By using (7)
and again (9) we obtain

E
[
RT1RT≥O∗(

√
T)+E[RT]

]
= E

[
(RT −R′T)1(RT−E[RT])≥O∗(

√
T)

]
+ E

[
R′T1(RT−E[RT])≥O∗(

√
T)

]
≤ E [|RT −R′T |] +R′T · P

(
RT ≥ E [RT] +O∗(

√
T)
)

≤ E [|RT −R′T |] + E [RT] · P
(
RT ≥ E [RT] +O∗(

√
T)
)

≤ O∗(
√
T) + C0 · log(T) · T · P

(
RT ≥ O∗(

√
T)
)

= O∗(
√
T) + C0 · log(T) · T (1− P1) = O∗(

√
T).

Combining all these together we obtain E[RT] = O∗(
√
T) which concludes the proof.

References

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
“Playing Atari with deep reinforcement learning.” In: arXiv preprint arXiv:1312.5602 (2013).

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, and S. Petersen. “Human-level control through
deep reinforcement learning.” In: Nature 518.7540 (2015), pp. 529–533.

[3] L. Fox, L. Choshen, and Y. Loewenstein. “DORA the explorer: directed outreaching reinforce-
ment action-selection.” In: International Conference on Learning Representations. 2018.

[4] B. C. Stadie, S. Levine, and P. Abbeel. “Incentivizing exploration in reinforcement learning
with deep predictive models.” In: arXiv preprint arXiv:1507.00814 (2015).

[5] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. “Exploration by random network distilla-
tion.” In: International Conference on Learning Representations. 2018.

[6] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. “The nonstochastic multiarmed
bandit problem.” In: SIAM Journal on Computing 32.1 (2002), pp. 48–77.

[7] A. L. Strehl and M. L. Littman. “An analysis of model-based interval estimation for Markov
decision processes.” In: Journal of Computer and System Sciences 74.8 (2008), pp. 1309–1331.

[8] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. “Unify-
ing count-based exploration and intrinsic motivation.” In: Advances in Neural Information
Processing Systems. 2016, pp. 1471–1479.

[9] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. “Gaussian process optimization in the
bandit setting: no regret and experimental design.” In: Proceedings of the 27th International
Conference on Machine Learning. 2010.

[10] S. Grünewälder, J. Y. Audibert, M. Opper, and J. Shawe–Taylor. “Regret bounds for Gaussian
process bandit problems.” In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics. 2010, pp. 273–280.

[11] R. Xia, C. Zong, and S. Li. “Ensemble of feature sets and classification algorithms for sentiment
classification.” In: Information Sciences 181.6 (2011), pp. 1138–1152.

[12] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. “Deep exploration via bootstrapped DQN.”
In: Advances in Neural Information Processing Systems. 2016, pp. 4026–4034.

[13] I. Osband, J. Aslanides, and A. Cassirer. “Randomized prior functions for deep reinforcement
learning.” In: Advances in Neural Information Processing Systems. 2018, pp. 8617–8629.

[14] M. Tokic. “Adaptive ε-greedy exploration in reinforcement learning based on value differences.”
In: Annual Conference on Artificial Intelligence. Springer. 2010, pp. 203–210.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal policy optimization
algorithms.” In: arXiv preprint arXiv:1707.06347 (2017).

[16] O. Rivlin. MountainCar_DQN_RND. https://github.com/orrivlin/MountainCar_
DQN_RND. 2019.

19

https://github.com/orrivlin/MountainCar_DQN_RND
https://github.com/orrivlin/MountainCar_DQN_RND

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep convolutional
neural networks.” In: Advances in Neural Information Processing Systems. 2012, pp. 1097–
1105.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “Imagenet: a large-scale hierarchi-
cal image database.” In: 2009 IEEE conference on Computer Vision and Pattern Recognition.
IEEE. 2009, pp. 248–255.

[19] L. Devroye, A. Mehrabian, and T. Reddad. “The total variation distance between high-
dimensional Gaussians.” In: arXiv preprint arXiv:1810.08693 (2018).

[20] J. Duchi. Probability bounds. http : / / ai . stanford . edu / ~jduchi / projects /
probability_bounds.pdf. 2009.

[21] M. F. Balcan. 8803 Machine learning theory. http://cs.cmu.edu/~ninamf/ML11/
lect1117.pdf. 2011.

[22] S. Chatterjee. Superconcentration and related topics. Vol. 15. Cham: Springer, 2014.

20

http://ai.stanford.edu/~jduchi/projects/probability_bounds.pdf
http://ai.stanford.edu/~jduchi/projects/probability_bounds.pdf
http://cs.cmu.edu/~ninamf/ML11/lect1117.pdf
http://cs.cmu.edu/~ninamf/ML11/lect1117.pdf

	1 Introduction
	2 Literature review
	3 Regret bounds for Gaussian MAB
	3.1 Lower bounds on regret
	3.2 Upper bounds on regret

	4 EXP4 algorithm for RL
	5 Computational study
	5.1 Mountain Car
	5.2 Montezuma's Revenge and Pure exploration setting

	A Proof of results in Section 3.1
	B Proof of results in Section 3.2
	B.1 Proof for Theorem 4
	B.2 Proof for Theorem 5
	B.3 Proof for Theorem 6

